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 GE HealthCare’s deep learning image reconstruction (DLIR) is the first 
Food and Drug Administration (FDA) cleared technology to utilize a 
deep neural network-based recon engine to generate high quality 
TrueFidelity DL computed tomography (CT) images. DLIR opens a new  
era for CT-image reconstruction by addressing challenges of filtered  
back-projection (FBP) and iterative reconstruction (IR). 

DLIR features a deep neural network (DNN), which was  
trained with high quality FBP data sets to learn how to  
differentiate noise from signals, and to intelligently suppress the  
noise without impacting anatomical and pathological structures. 

The resulting TrueFidelity DL CT images, with outstanding image 
quality and preferred noise texture, have the potential to improve 
reading confidence in a wide range of clinical applications, including 
imaging the head, whole body, cardiovascular, and for patients of all 
ages.  
DLIR is designed with fast reconstruction speed for routine CT use, even 
in acute care settings.

This white paper will: first, take a look at the overall evolution of CT 
image reconstruction; second, explain the design, supervised training, 
and deployment of DLIR engine; and third, reveal early phantom and 
clinical evidence illustrating the performance of TrueFidelity DL on 
practical cases. 

Introduction

Filtered back-projection (FBP) was the dominant algorithm used 
in image reconstruction for the first 30 years of CT because of its 
computational efficiency and accuracy. The algorithm lends itself nicely 
to parallel processing and allows images to be reconstructed in nearly 
real time as the patient is being scanned. From an accuracy point of 
view, the algorithm can reconstruct the “exact” replica of the scanned 
object when the input sinogram is “ideal.” These highly desired 
properties, however, come with significant limitations. FBP generally 
fails to model the non-ideal behaviors of the CT system. Departures 
from ideal behavior can come from the fundamental properties of X-ray 
physics (e.g., beam hardening and scatter), the statistical nature of the 
data acquisition (e.g., limited X-ray photon flux and electronic noise), 
geometric factors of the system (e.g., partial volume or finite X-ray 
focal spot size and detector cell size), and patient related factors (e.g., 
patient positioning and motion). These limitations often lead to higher 
radiation doses for patients in order to get acceptable image quality or 
result in reconstructed images of limited quality.1

Challenges of Filtered Back-Projection 
and Iterative Reconstruction

To overcome the shortcomings of FBP, iterative reconstruction (IR) 
was introduced to CT.2,3 Instead of a closed-form solution as in FBP, 
IR relies on finding the solutions, which are the reconstructed images 
that match the reconstruction model in an iterative fashion. Modeling 
accuracy that drives reconstruction image quality often leads to 
increased complexity in the IR reconstruction process to approximate 
the non-ideal behavior of the data acquisition system and often slows 
down performance. The most comprehensive IR, the so-called model-
based iterative reconstruction (MBIR), explicitly accounts for system 
statistics, X-ray physics, system optics, and patient characteristics 
all at the same time.4 To make the solution tractable (i.e. capable 
of being handled mathematically), the traditional ways of handling 
these models focus on simplifying complex and often intertwined 
phenomena with our theoretical understanding of the physics, 
statistics, image properties, and engineering. This approach manages 
the optimization of the solution with a limited number of parameters, 
typically less than a hundred, either calculated or manually tuned.
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Although MBIR and IR are quite successful in reducing dose to 
patients, their performance in terms of image quality may be less 
than satisfactory under the most difficult conditions. The visual 
impression of the reconstructed images often differs from the look 
and feel of images generated with FBP in ideal conditions due to 
the modeling complexity that the algorithm can manage. It is often 
reported that the noise texture appears “blotchy,” “plastic-looking” 
or simply “unnatural.”5 The degree of degradation from the expected 
appearance of a CT image by a trained radiologist is often linked to the 
strength of the IR algorithm: the stronger the IR, the more “plastic” 
the image looks. Compromised scanning conditions such as low dose 
make things worse, forcing the algorithm to work even harder, further 
degrading image appearance in order to produce results with low 
noise: non-linearities in the processing result in locally flat regions 
in homogeneous tissues and residual noise spikes around sharp 
edges such as bones and vessel boundaries in order to preserve high 
resolution detail. In routine clinical practice, therefore, radiologists 
often limit the IR to a level that they are comfortable with. As a result, 
IR often offers a trade-off between true dose reduction and reading 
diagnostic confidence.

Filtered Back-Projection (FBP) is accurate 
when radiation dose is high and the input 
sinogram is ideal, but in low dose settings, 
it is challenged with higher image noise and 
artifacts.

Iterative Reconstruction (IR) is successful in 
reducing radiation dose, but has image texture 
challenges with full strength due to limited 
complexity of the model.

Figure 1: Generations of CT reconstruction technologies. The limitations of FBP and IR motivated GE to explore a new era of deep learning based CT image reconstruction.
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Faced with these limitations of IR, which was considered the  
state of the art, the development team at GE asked the following 
question: are these shortcomings the results of a lack of refinement 
of the IR technology or the fundamental limitations of a principled 
approach whereby modeling accuracy drives image quality?  
For many years, GE was at the forefront of pushing IR modeling  
further with spectacular results in concurrent noise reduction and 
spatial resolution performance, yet image texture and general 
appearance remained compromised relative to ideal expectations.  

The New Era of Deep Learning-Based 
Image Reconstruction

Perhaps a new technology was needed to break through the modeling 
limitations of IR itself. Which technology had the potential to overcome 
this tradeoff? These questions motivated GE to explore deep learning–
based image reconstruction (Fig. 1).
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Deep learning (DL) is a subset of machine learning (ML), both of which 
are subsets of artificial intelligence (AI).6,7 AI is a broad term to cover the 
theory and development of computer systems to be able to perform 
tasks that normally require human intelligence. ML is based on the 
idea that systems can learn from data, patterns, and features to make 
decisions with minimal human intervention; and DL utilizes Deep 
Neural Networks (DNNs) to accomplish the same tasks that ML does.  
A DNN consists of multiple layers of mathematical equations, and it can 
find the correct mathematical manipulation to turn the input into the 
output, whether it be a linear or non-linear relationship.

DL technology has gained significant popularity in recent years 
because of advances in computational power and the development 
of modern algorithms for network topology and efficient training. The 
power of DL lies in its ability to handle complex models and a vast 
number of parameters far beyond the abilities of human engineers 
and scientists.6,7 Traditional algorithms rely on humans to manage 
parameters so that an optimal solution is tractable. The human-
based optimization process limits the number of parameters to be 
manually optimized to typically less than a hundred. IR is particularly 
challenged in that regard since a growing number of parameters 
makes it more difficult to retain the necessary convergence properties 
of the algorithm. This limits the complexity of the models that can be 
incorporated into the iterative reconstruction process and, eventually, 
limits the overall performance of the algorithm. However, a DL 
approach does not require explicit models for the real system to be 
simplified to a few parameters. These models can be formed directly by 
the training process, with a significantly higher number of dimensions, 
and a number of parameters that can be handled in the millions, 
because computers can be used to train them concurrently.  

Why is Deep Learning so Compelling?
With appropriate network topology, a DL model can embody 
and represent the most complex relationships in a manner so far 
unattainable with conventional modeling approaches. DL thereby 
avoids many of the pitfalls of traditional algorithms and lends 
itself nicely to solving the fundamental challenges of IR. This led  
GE HealthCare to the creation of a deep learning-based image 
reconstruction engine.

With the ability to handle complex models and 
a vast number of parameters through training 
process, deep learning holds the promise 
of solving the fundamental challenges of 
Iterative Reconstruction.

Figure 3: Deep learning outperforms the traditional algorithms that are limited by the 
number of models and parameters they can manage.

ARTIFICIAL INTELLIGENCE
Incorporating human intelligence  
to machines

Figure 2: Artificial intelligence encompasses both machine learning and deep learning. Deep learning, a subset of machine learning, uses deep neural networks to greatly enhance  
its accuracy.

MACHINE LEARNING
Empowering computer systems with the 
ability to “learn” DEEP LEARNING

Learning based on deep neural networks
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The design goal of deep learning image reconstruction is to provide 
a reconstructed image solution that outperforms existing model-
based iterative reconstruction (MBIR) in terms of image quality, dose 
performance, and reconstruction speed.

To achieve this ambitious goal, the DLIR engine is designed to employ  
a new imaging chain that incorporates technical and clinical knowledge 
accumulated over the past four decades of CT.

The DLIR engine builds upon specific knowledge of the detailed 
design of the particular CT system. This includes knowledge of the 
conditioning of the collected data. Even more importantly, this 
knowledge is embedded within a DNN, which is capable of learning 
through a large number of real-world examples. Through these 
examples, the DLIR engine gradually optimizes the coefficients of its 
internal network as it figures out how to arrive at the optimal solution 
(i.e. the best image).

Like in the human learning process, both the training data and the 
training process are important to the success of the DLIR engine creation:
•	 Ground truth training data sets were created to establish the best 

training target for DLIR

•	 The training phase involved training, validation, and testing, before 
the final product is ready

•	 Once the DLIR engine has been trained and fully tested, the 
inference network uses the trained coefficients to deploy the new 
image reconstruction in a clinical environment

The Deep Learning-Based Image 
Reconstruction Engine

Once it is deployed, the DLIR engine is fixed to allow for a predictable 
outcome in the field, representative of the imaging characteristics it has 
learned during the supervised training phase.

Both the training data and the training process 
are important to the success of the DLIR engine 
creation.

Figure 4: Schematic of the deep learning image reconstruction engine.

DESIGNING
Creating layers of mathematical equations, (a Deep 
Neural Network, DNN) that can handle millions of 
parameters.

TRAINING
Inputting a low dose sinogram through the Deep Neural 
Network and comparing the output image to a ground 
truth image – a high dose version of the same data. These 
two images are compared across multiple parameters 
such as image noise, low contrast resolution, low contrast 
detectability, noise texture, etc. The output image reports 
the differences to the network via backpropagation which 
then strengthens some equations and weakens others and 
tries again. This process is repeated till there is accuracy 
between the output image and the ground truth image.

VERIFYING
The network is required to reconstruct clinical and 
phantom cases it has never seen before, including 
extremely rare cases designed to push the network to 
its limits, confirming its robustness.

Figure 5: Key phases of designing the deep learning image reconstruction engine.
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In deep learning, the training target determines the output. The target 
of the DLIR engine is to learn the properties of the ground truth image 
sets that we created.

Ground truth training data are CT images reconstructed by FBP that can 
faithfully represent the scanned object.

FBP is a mathematically accurate reconstruction algorithm developed 
under the best data acquisition and reconstruction conditions (i.e., 
from ideal projection data acquired with high radiation dose). After 
being refined over many decades, FBP has a unique advantage – when 
the input projection data includes low noise statistics, the output 
image exhibits a “natural” noise texture that is well accepted by the 
radiology community. Ground truth training data are CT images 

reconstructed by FBP that can faithfully 
represent the scanned object.

Ground Truth Training Target
“Ideal” projection data is obtained by optimizing the data acquisition 
to minimize all non-ideal behaviors of the CT system, such as scatter 
and other degradations inherent to the physics of X-ray interaction with 
matter, and correcting for the residual non-idealities, such as beam 
hardening.

The ground truth training data are based on images collected from 
both phantoms in the laboratory and patients in a clinical setting, and 
span a variety of acquisition protocols. As a result, DLIR was trained on 
a massive number of patient and phantom cases that cover different 
body habitus and anatomies, scan conditions, and clinical indications.

The training process includes training, validation, and testing, which 
was supervised by  GE HealthCare CT image quality experts and 
experienced radiologists.

Training starts with an objective task and selection of the training 
data, which includes the input data to the neural network and the 
corresponding expected output data. For each scanned object, both a 
high-dose, low-noise dataset and a low-dose, high-noise dataset are 
acquired. Images reconstructed with the high-dose dataset produce the 
ground truth. The DLIR engine is applied on the low-dose datasets to 
produce an estimation of the reconstructed images. Since the ground 
truth is known, it is used as the training target for the deep learning-
based reconstruction engine.

The training process is outlined below:
•	 The DLIR engine generates the output image from an input 

sinogram that is acquired with low radiation dose

Supervised Training
•	 The features of the temporary output image are compared to 

the ground truth image to find the differences in terms of image 
noise, noise texture, low-contrast resolution, high-contrast spatial 
resolution, and other metrics

•	 Millions of parameters representing the DNN are fine-tuned through 
embedded backpropagation based on those differences. The goal 
of this parameter optimization is to reduce the difference between 
the DLIR output and the ground truth images

•	 The above training process is repeated on thousands of training 
data until the DLIR engine can generate output images to 
accurately match the ground truth images in a large variety 
of realistic conditions

•	 The DLIR engine then undergoes extensive testing whereby a large 
number of validation datasets that were not used in the training 
are reconstructed to ensure the robustness and accuracy of the 
DLIR engine



A new era of image reconstruction: TrueFidelity DL  |  7  

Figure 6: A schematic of training process.
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One of the key criteria of a successful training is the quality of the 
generated images. Compared to FBP images generated from the same 
scan data, DLIR images not only need to successfully remove noise, but 
also preserve noise texture, and anatomical and pathological details. 
This requirement forces the DLIR to undergo rigorous validation and 
testing. The validation and testing process required that the DLIR 
engine reconstruct numerous cases that it had never seen before, 
and many corner conditions, cases that are extremely rare and were 
specially designed to challenge the algorithm. To demonstrate the 
robustness of the DLIR algorithm, Figure 7 depicts images generated 
with the same scan data: the image on the left was reconstructed with 
FBP algorithm, the image in the middle was reconstructed with DLIR, 
and the image on the right was generated by subtracting DLIR image 
from the FBP image. The fact that anatomical structure is not present 
in the difference image, even for such complex anatomy with both 
low-contrast and high-contrast detail, is a clear demonstration of the 
robustness of DLIR.

Figure 7: Clinical images to demonstrate the robustness of DLIR algorithm.

The training process includes training, 
validation and testing which was supervised 
by GE CT image quality experts and 
experienced radiologists.

A key criterion of successful training is for 
output images to not only successfully 
remove noise but also preserve noise texture, 
anatomical and pathological details, 
compared to the ground truth training target.

FBP DLIR FBP-DLIR
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Inferencing is a term used widely in the deep-learning community that 
essentially means using the trained neural network in practice. Unlike 
training, it doesn’t include a backward pass to compute error and 
update weights. It takes a network that has already been trained and 
uses that trained model to perform useful tasks.

After the completion of supervised training, the DNN-based DLIR engine 
has been formulated with all parameters pre-computed and fixed, and 
is able to generate ground truth equivalent high-quality DICOM images 
– commercially known as TrueFidelity DL CT images. 

The DLIR engine is deployed to run natively on the reconstruction 
hardware of specific CT systems. The scan data acquired by the CT 
scanner goes through the DLIR engine only once to produce the 
TrueFidelity DL images (Figure 8). As examples shown in Figure 9, the 
resultant reconstruction throughput is fast enough for routine CT use, 
even in acute care settings.

Inferencing and Deployment
DLIR provides three selectable reconstruction strength levels (low, 
medium, high) to control the amount of noise reduction. Without 
impacting reconstruction speed, the strength levels are selectable and 
can be built into the reconstruction protocols based on the clinical 
applications and radiologist preference.

At the completion of training, the DLIR engine 
can generate TrueFidelity DL CT images with 
fast reconstruction speed for routine CT use.

CT system

CT scan  
data

TrueFidelity  
CT images

On the CT 
console

DNN-based deep learning 
image reconstruction engine

Figure 8: Reconstruction flow of deep learning image reconstruction.

Figure 9: Examples of reconstruction speed of deep learning image reconstruction.

Axial Acquisition 
160 mm in Z axis 
512 x 512 Matrix 
0.625 mm thickness 
256 images

Helical Acquisition 
425 mm in Z axis 
512 x 512 Matrix 
0.625 mm thickness 
681 images

≤85 seconds≤50 seconds
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Phantom studies were designed to evaluate the performance of TrueFidelity DL on image noise reduction (Fig. 10), noise texture (Fig. 11),  
contrast-noise-ratio improvement (Fig. 12), and low contrast detectability improvement (Fig. 13).

The Catphan® 600 phantom (The Phantom Laboratory, NY, US) is 
combined here with a 25*35 cm oval body annulus to simulate a typical 
adult body. The phantom’s uniform section (CTP486) was scanned 
on Revolution CT with 120 kV, CTDIvol = 3.27 mGy. Images were 
reconstructed with 0.625 mm thickness using FBP, ASiR-V 50%,  
DLIR-L/M/H. The image noise (standard deviation in CT number in  
a uniform region of interest) was measured with a 4 cm* 4 cm ROI in  
the center of the image.

Early Evidence: Phantom Studies

Figure 10: Evaluation of Image Noise Reduction

Measured CT number standard deviation values, shown in (Fig. 10a), 
show that DLIR has better noise reduction performance than FBP 
and ASiR-V. The relative noise reduction with the baseline of FBP 
(Fig. 10b) illustrates a progressive image noise reduction as DLIR 
strength increases.

Figure 10a. Figure 10b.
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The DLIR engine is trained to create TrueFidelity DL CT images with a 
noise texture similar to high dose FBP.

Noise texture can be characterized by the noise power spectrum (NPS).8 
NPS is a widely used metric for the characterization of noise patterns in 
CT images.9-13 It describes the noise power within a chosen region-of-
interest (ROI) as a function of spatial frequency. When the noise power 
peaks at lower frequencies the image is observed to have coarse noise 
granularity, and when it peaks at higher frequencies it is observed to 
have finer noise granularity.9,11 The normalized NPS (nNPS), whereby 
the NPS is normalized by the area under the curve, is a fair method for 
comparing acquisitions with different dose levels.

Figure 11: Evaluation of Noise Texture via Noise Power Spectrum

The 20 cm water phantom ( GE HealthCare, WI, US) was scanned on 
Revolution CT with two CTDIvol levels: 4.9mGy and 15.1mGy, and 2.5 
mm thick images were reconstructed using FBP, ASiR-V 100% and 
DLIR-H (Fig. 11a). ASiR-V 100% and DLIR-H were selected for the highest 
potential visible change in image texture relative to the FBP reference 
at higher dose, for a challenging setup to compare the impact of the 
iterative reconstruction and deep-learning technologies on image 
appearance. The normalized NPS curves (Fig. 11b) show that images 
of low-dose DLIR have the same NPS characteristics as the images of 
high-dose FBP, whereas iterative reconstruction produces results that 
are clearly different.

FBP, 15.1 mGy ASiR-V 100%, 
4.9 mGy

DLIR-H, 4.9 mGy

Figure 11a.

Figure 11b.
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The ACR 464 phantom (Gammex, WI, US) was scanned on Revolution 
CT with 120 kV, CTDIvol = 8.5 mGy and reconstructed with FBP, ASiR-V 
and DLIR L/M/H. The phantom Module-2 features a series of cylinders 
with different diameters ranging from 2 mm to 25 mm, all at 6HU 
difference from the background material, as illustrated in (Fig. 12a).

The CNR was calculated based on two ROIs of 100 mm 2 in different 
regions, as shown in (Fig. 12b), and consistent with ACR accreditation 
testing.

Figure 12: Evaluation of Contrast-to-Noise Ratio (CNR) Improvement

The CNR was calculated as

CNR = (Mean[ROI1]-Mean[ROI2]) ⁄ (SD[ROI1]),

where mean and SD denote mean and standard deviation in CT values 
inside the corresponding ROIs.14

Both measured CNR (Fig. 12c) and normalized CNR (Fig. 12d) 
demonstrates that DLIR delivers up to 2X higher CNR than FBP, and CNR 
increases as a function of DLIR strength.

Figure 12a.

Figure 12c.

Figure 12b. Figure 12d.
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Figure 13: Evaluation of Low Contrast Detectability Improvement

The Catphan 189 MITA Low Contrast Phantom (The Phantom 
Laboratary, NY, US) was imaged on Revolution CT with 120 kV, CTDIvol = 
3.63 mGy and 4.72 mGy. This phantom (Fig. 13a) includes different low 
contrast objects of various sizes and intensities (Fig. 13b). The phantom 
scans were reconstructed with ASiR-V 100% and DLIR-H.

Fig. 13c provides plots of the model observer ROC curves and AUC 
values and their associated error bars. The blue and green curves 
represent the ROC curves of ASiR-V and DLIR, respectively. The higher 
the true positive fraction the better the low contrast detection. The blue 
and green bars represent ASiR-V 100% and DLIR-H, respectively. The 
higher the AUC value the better the LCD performance.

Both ROC curves and AUC values demonstrate that DLIR outperforms 
ASiR-V in low contrast detectability.

Figure 13a.

Low-contrast detectability (LCD) is crucial for some CT applications, for 
example, liver oncology imaging where neoplastic disease commonly 
manifests itself as a low-attenuating object within a background of 
slightly higher attenuation liver tissue.

The LCD performance of DLIR was evaluated using a mathematical 
model observer’s method, recommended by the Joint MITA-FDA CT 
Image Quality Task Group to evaluate CT dose and image quality. 
Compared to a conventional human observer method, this method 
is objective and consistent, and correlates well with human observer 
results for clinically relevant scenarios.15

The Channelized Hotelling Observer (CHO)1 was chosen for DLIR’s LCD 
assessment. Receiver Operating Characteristic (ROC) curves and the 
Area Under the ROC Curve (AUC) values were used for LCD performance 
evaluation.
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Figure 13b.
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Figure 13c.
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Early Evidence: Clinical Cases

Example of TrueFidelity DL CT images in abdominal and pelvic CT imaging. The patient with multiple metastatic cancer lesions was scanned on 
Revolution CT, images were reconstructed with 0.625mm thickness using FBP(A,D,G), ASiR-V (B,E,H) and DLIR(C,F,I).

In axial, coronal and sagittal planes, DLIR demonstrates similar performance in reducing image noise, preserving noise texture and better visualizing 
the boundaries and internal structures of cancer lesions.

Deep learning image reconstruction (DLIR) has been cleared by FDA for different anatomies with patients of all ages with all ages, including head, 
whole body, and cardiovascular applications. DLIR’s different levels (low, medium and high) can be used for different clinical tasks to improve image 
quality. The following clinical cases (Fig. 14 – 19) demonstrate how early adopters use DLIR to improve patient care.

Figure 14: Abdominal and Pelvic Imaging

Scan type Helical

Rotation time, s 0.5

Pitch 1.375

kV 120

mA Smart mA

Slice, mm 0.625

Noise index 13

CTDIvol, mGy 6.7

DLP, mGy-cm 311

Eff. dose, mSv 4.7

k, *DLP 0.015

A: FBP

D: FBP

G: FBP

B: ASiR-V 50%

E: ASiR-V 50%

H: ASiR-V 50%

C: DLIR-H

F: DLIR-H

I: DLIR-H
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Example of TrueFidelity DL CT images in neuro CT imaging. The patient was scanned at 120 kV, 330 mA, with recorded radiation exposure of  
CTDIvol = 49.5 mGy. Images were reconstructed with 2.5 mm thickness using FBP(A), ASiR-V (B) and DLIR (C). DLIR images show decreased image 
noise, improved noise texture and grey/white matter differentiation.

Courtesy of University Hospital Jena, Germany.

Example of TrueFidelity DL CT images in coronary CT angiography. DLIR used with cardiac high-resolution protocol for imaging the coronary arteries 
with calcified and soft plaque. Images reconstructed with DLIR (C, F-I) exhibited image quality improvement with reduced image noise, better 
defined anatomical edges and borders and enhanced visualization of fine details, when compared with FBP(A, D) and ASiR-V(B, E).

Courtesy of the Centre Cardiologique du Nord, France.

Figure 15: Head Imaging

Figure 16: Cardiovascular Imaging

Scan type 1-beat cardiac axial

Rotation time, s 0.28

Slice, mm 0.625

kV 100

mA 580

Kernel HD STD

CTDIvol, mGy 4.54

DLP, mGy-cm 63.6

Eff. dose, mSv 0.89

k, *DLP 0.014

Scan type Axial

Rotation time, s 1.0

Slice, mm 2.5

kV 120

mA 330

Noise index 3.4

CTDIvol, mGy 49.5

DLP, mGy-cm 694

Eff. dose, mSv 1.45

k, *DLP 0.0021

A: FBP B: ASiR-V 50% C: DLIR-H

A: FBP

D: FBP

G: DLIR-H

B: ASiR-V 50%

E: ASiR-V 50%

H:DLIR-H

C: DLIR-H

F: DLIR-H

I:DLIR-H
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Example of TrueFidelity DL CT images in thoracic CT imaging. The patient has a history of pneumothorax and bronchiectasis, and has difficulty 
holding their breath. The whole chest was scanned within 1.2 s on Revolution CT using HyperDrive (a high pitch helical scan mode). Images were 
reconstructed with 0.625 mm thickness using FBP(A), ASiR-V (B), and DLIR-M(C,D).

DLIR significantly reduces image noise and improves visualization of anatomical and pathological details to reveal moderate left pneumothorax, 
bilateral bronchiectasis with fibrosis and consolidation in right upper lobe.

Courtesy of Froedtert and Medical College of Wisconsin, USA.

Figure 17: Thoracic Imaging

Scan type HyperDrive

Rotation time, s 0.5

Pitch 1.531

Slice, mm 0.625

Scan length, mm 330

Scan time, s 1.2

kV 100

mA 202 – 387

Noise index 19.4

CTDIvol, mGy 4.4

DLP, mGy-cm 194

Eff. dose, mSv 2.7

k, *DLP 0.014

A: FBP

C: DLIR-M

B: ASiR-V 50%

D: DLIR-M

Scan type HyperDrive

Rotation time, s 0.35

Pitch 1.531

Slice, mm 0.625

Scan length, mm 370

Scan time, s 1

kV 140

mA 215 – 382

Noise index 11.4

CTDIvol, mGy 6.7

DLP, mGy-cm 315

Eff. dose, mSv 4.7

k, *DLP 0.015

DLIR works synergistically with Metal Artifact Reduction (Smart MAR). The exam was completed in less than 1s on Revolution CT using HyperDrive 
(a high pitch helical scan mode). DLIR and Smart MAR work together to improve image quality and reveal hidden anatomical structure by removing 
metal artifacts.

Courtesy of Froedtert and Medical College of Wisconsin, USA.

Figure 18: Metal Artifact Reduction

A: FBP without MAR B: ASiR-V with MAR C: DLIR with MAR
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The era of deep learning-based CT image reconstruction has arrived 
in clinical practice. With an innovative design and advanced training 
method,  GE HealthCare’s deep learning image reconstruction produces 
intelligent image noise reduction and restores preferred noise texture, 
leading to improved objective and subjective image quality compared 
to filtered back-projection and iterative reconstruction.

Conclusion
The resultant TrueFidelity DL images improve image quality in previously 
challenging areas, such as low-dose imaging, high-resolution imaging, 
and the evaluation of obese individuals. It also holds the potential to 
enable designing CT acquisition protocols at reduced radiation dose 
levels without sacrificing image quality, which is particularly attractive in 
screening examinations, pediatric imaging, and for repeat examinations.

More evidence-based physics and clinical studies are needed to 
evaluate all aspects of this emerging technology and to enhance its 
clinical adoption to improve patient care.

This example shows images of an oncology patient (BMI = 33) who underwent two different CT scans: a prior standard dose CT protocol and a 
follow-up lower dose CT protocol. Images (A,C) are the venous phase of the prior scan reconstructed with ASIR-V 50%; images (B,D) are the venous 
phase of the follow-up scan reconstructed with DLIR-H. DLIR demonstrated improved image quality with 51% lower radiation dose.

Courtesy of University Hospital Jena, Germany.

Figure 19: Oncology Follow-up Scan with Lower Dose

Prior exam Follow-up exam
Scan type Helical Helical

Rotation time, s 0.5 0.5

Pitch 1 1

Slice, mm 0.625 0.625

kV 120 120

mA Smart mA Smart mA

Noise index 27 35

CTDIvol, mGy
Non-contrast: 10.38 
Arterial: 10.50 
Venous: 10.38

Non-contrast: 4.54 
Arterial: 4.80 
Venous: 5.1

A: ASiR-V 50% 
Prior exam with 10.38 mGy

C: ASiR-V 50% 
Prior exam with 10.38 mGy

B: DLIR-H 
Follow-up exam with 5.1 mGy

D: DLIR-H 
Follow-up exam with 5.1 mGy
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Glossary
Artificial Intelligence (AI)
A broad term to cover the theory and development of computer systems able to perform 
tasks that normally require human intelligence.

Backpropagation
The central mechanism by which deep neural networks can learn. It is the messenger telling 
the network whether or not the network made a prediction with imperfect results. In the 
context of learning, backpropagation commonly uses the gradient descent optimization 
algorithm to adjust the weight of neurons by calculating the gradient of the loss function.

Deep learning (DL)
A subset of machine learning, DL utilizes deep neural networks which consist of layers of 
mathematical equations and millions of connections and parameters that get trained and 
strengthened based on the desired output.

Deep learning image reconstruction
A CT image reconstruction technique that utilizes deep neural networks to generate  
CT images.

Deep neural network (DNN)
An artificial neural network with multiple layers of mathematical equations and millions 
of connections and parameters that get trained and strengthened based on the desired 
output.

DLIR-low/medium/high
Three selectable reconstruction strength levels (Low, Medium, High) to control the amount 
of noise reduction. Without impacting reconstruction speed, the strength levels are 
selectable and can be built into reconstruction protocols based on the clinical applications 
and radiologist preference.

Ground truth training data
Refers to millions of CT images reconstructed by FBP that faithfully represent the scanned 
object, and that are used to train the DLIR engine to generate TrueFidelity CT images.

Inferencing
Using the trained neural network in practice. Unlike training, it doesn’t include 
backpropagation to compute the error and update the DNN weights. It takes a network that 
has already been trained and uses that trained model to perform useful tasks.

Machine learning (ML)
A branch of artificial intelligence based on the idea that systems can learn from data, 
patterns, and features to make decisions with minimal human intervention.

Mathematical model observer method
An objective method to evaluate low contrast detectability, which is recommended by  
MITA-FDA CT Image Quality Task Group.

Noise power spectrum (NPS)
A widely used metric for the characterization of noise patterns in CT images. It describes the 
noise texture within a chosen region-of-interest as a function of spatial frequency.

TrueFidelity deep learning image reconstruction
A  GE HealthCare designed, FDA cleared, deep neural network based CT image 
reconstruction technology to generate TrueFidelity CT images with outstanding image 
quality and preferred image noise texture.

TrueFidelity CT Images
The commercial name of high-quality CT images generated by  GE HealthCare’s deep 
learning image reconstruction engine.
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